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Cyclic cellular automata are two-dimensional cellular automata which generalize. 
lattice versions of the Lorentz gas and certain biochemistry models of artificial 
life. We show that rotators and time reversibility play a special role in the 
creation of closed orbits in cyclic cellular automata. We also prove that almost 
every orbit is closed (periodic) and the absence of diffusion for the flipping 
rotator model (also known as the ant). 

KEY W O R D S :  Cellular automata; closed orbit; periodic point; rotators; 
time reversibility; Lorentz lattice gas. 

1. I N T R O D U C T I O N  

The study of the nature of motion of a tagged particle in a fluid has a long 
history. There are two types of models which were created in these efforts: 
deterministic ones and probabilistic ones. Deterministic models are more 
physically relevant to the initial problem of deriving the macroscopic 
dynamics from the microscopic laws. The first such model is the Boltzmann 
gas of hard spheres, It) where one considers the diffusion of a tagged particle 
in a gas of identical particles. Later models include the Lorentz gas 12) and 
Ehrenfest's wind-tree model) 3~ In these two models a point particle moves 
in an array of immovable (infinitely heavy) scatterers. 

The study of these models turned out to be very complicated. There- 
fore recently simpler deterministic models were considered. These models 
form the class of Lorentz lattice gas cellular automata. ~4-61 In biochemistry 
a related class of cellular automata was considered in the description of 
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artificial life. c71 These models demonstrate a large variety of different kinds 
of motion, t8-1~ They are deterministic dynamical systems in a random 
environment. 

In this paper we consider a class of models which generalize Lorentz 
lattice gas cellular automata. In cyclic cellular automata one (or many) 
point particles propagate with unit speed along the bonds of some lattice. 
At any vertex the velocity direction of the particle is changed according to 
a deterministic scattering rule. The scattering rule chosen depends on the 
state of the vertex. The states of a vertex change cyclically, hence the name 
cyclic cellular automata. In comparison, in Lorentz lattice gas models there 
are only one or two states. A cyclic cellular automaton is defined by a 
lattice (square, triangular, hexagonal, quasicrystal, etc.), by a collection of 
admissible scattering rules with an ordering (states), and by their distribu- 
tion among the vertices of the lattice. 

In refs. 8-10 we showed that taking different lattices and scattering 
rules, one gets different behavior of the motion in the corresponding 
Lorentz lattice gas cellular automata. This is the traditional (direct) 
approach to the analysis of models in kinetic theory, that is, one defines 
a model and then analyzes its dynamics, in particular the topology of 
trajectories of particles. 

In this paper we show (for the first time, to our knowledge) that it is 
possible to consider and to solve in some cases the inverse problem, i.e., the 
topology of trajectories of a moving particle (the macroscopic dynamics) 
defines the types of immovable particles (the microscopic scattering laws) 
and some features of their distribution on a lattice. Moreover, we have 
found some relations of time reversibility in Lorentz lattice gas cellular 
automata with the topology of trajectories of the particle. 

Our main result is that in the absence of backscattering on the square 
lattice the existence of a closed (periodic) trajectory (at least one?) of a 
particle implies that all scattering rules are rotations by 90 ~ (rotators). 
Because rotators are singled out we go on to show that for the flipping 
rotator model (also known as the ant) almost every orbit is closed and this 
model exhibits an absence of diffusion. 

We have found that time reversibility and the existence of periodic 
motion are closely linked for cyclic cellular automata. It would be interest- 
ing to see what the relation between them is for other classes of such 
models, for example, FCHC-lattice gas cellular automata. (~t~ 

2. D E S C R I P T I O N  OF THE M O D E L S  A N D  S T A T E M E N T  
OF T H E O R E M S  

We consider the Z 2 lattice. All (or some) vertices contain an identical 
copy of the same finite automaton which can be in any one of k states. We 
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think of the finite au toma ton  in a given state as a scattering rule. Namely  
in Z 2 label the four edges coming to a vertex 0, l, 2, 3 so that  on a clock 
the edge i corresponds to 3i o'clock. A scattering rule is given by a function 
qk {0, 1, 2, 3} ~ {0, 1, 2, 3}; a particle approaching a vertex along edge j 
will leave that  vertex along edge ~b(j). The rules given are local, thus the 
particle will approach  the next vertex along edge ~b(j) + 2 mod(4).  For  each 
of the four incoming edges a scattering rule tells us on which of the four 
outgoing edges the particle will leave, thus there are 4 4 =  256 scattering 
rules. Some special rules we will consider are a right rotator:  R(j)= 
j - l m o d ( 4 ) ;  a left rotator:  L(j)=j+ 1 mod(4);  and the straight-ahead 
rule: S(j)=j+2mod(4). Another  special pair  of rules are r ( 0 ) = 3 ,  
r ( 1 ) = 2 ,  r ( 2 ) =  1, r ( 3 ) = 0  and l ( 0 ) =  l , / ( 1 ) = 0 ,  l(2) = 3 , / (3)  = 2, which are 
referred to as right and left mirrors  (Fig. 1). The finite au toma ton  is then 
an ordered set of scattering rules: {~b,, ~b 2 ..... ~bk}. 

A single particle with unit speed and four possible directions flows 
along the bonds of the lattice. When it enters the finite au tomaton  in state 
~ ie  {~b~, ~b 2 ..... ~bk} it leaves it in state ~bi+lmoalkl. We will always assume 

1 1 
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3 3 

Right rotator C Left rotator 

1 1 

0 2 0 2 

3 3 

Right mirror Left mirror 

Fig. 1. 

1 

3 

Straight ahead 

A right rotator, a left rotator, a right mirror, a left mirror, and the straight-ahead 
rule. 
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that the cyclic group {~b~, r  ..... ~b,} is minimally presented, i.e., there is no 
1 ~< 1 < k such that ~b~ = ~b~§ Vie { 1, 2 ..... k }. For  example, the cyclic 
group {L, R, L, R} minimally presented is {L, R}. We consider all possible 
configurations of initial s tates/20 on Z 2, that  is,/20 = {~b~, ~b2 ..... ~k} z2. We 
will also consider the configuration space /2j in which not all lattice sites 
have a finite au tomaton ,  those that have no finite au toma ton  have the 
straight-ahead rule. This rule does not change when the particle passes 
through it. However,  in this f ramework some of the ~bi can also be the 
straight-ahead rule, but they change their state to ~b~§ when a 
particle passes through the finite automaton.  The enlarged configuration 
space is/21 = {S, ~j ,  ~2 ..... ~bk} z2- 

We discretize the flow by keeping track of the particle as it leaves 
vertices. Let Z , : = / 2 ~ x  {0, 1, 2, 3} x Z-" for i e  {0, 1} be the phase space 
of the cellular automaton.  A point z = (co, d, (i, j ) ) e Z i  consists of the 
configuration of states toe /2 ; ,  the velocity direction d e  {0, 1, 2, 3} of the 
particle, and the location (i, j )  e Z 2 of the particle. We denote by g: Zi --+ Zz 
the discretized motion.  

We call the orbit of a point z e Z~ closed (periodic) if there is a positive 
integer n such that g"(z )=  z. We want to know the au tomata  for which g 
will have at least one closed orbit. 

A scattering rule ~ is said to have no backscattering if ~b(j) :/: j for all 
j e  {0, 1 ,2 ,3} .  Our  first theorem says that among  all scattering rules 
without backscattering, only rotators  can have closed orbits. 

Theorem 1. For  a n y k / > l  if for s o m e i e { 1 , 2  ..... k} the scattering 
rule ~ has no backscattering and there is a z e  Z~ whose orbit  is closed 
(periodic), then ~i is a ro ta tor  (i.e., ~b~ = L or ~b~ = R). 

It is not hard to build counterexamples to Theorem 1 if we drop the 
assumption of backscattering. 

We introduce two special models for k =  2. If ~b~ = R, ~b2 = L, the 
model is called the flipping ro ta tor  (FR) model and was introduced by 
Langton ~71 and independently by several other authors. If ~b~ = r, ~b 2 = / ,  the 
model is called the flipping mirror  (FM)  model and was introduced by 
Ruijgrok and Cohen. 14~ As a corollary to Theorem I, we have: 

C o r o l l a r y  2. Fix k t> I. Suppose for all 1 ~< i ~< k the scattering rules 
~b; have no backscattering. If additionally there is a z ~ Z ~  whose orbit  is 
closed, then each ~b; is a rotator.  In particular, if k =  2 and ~b~ #~b2, the g 
is the FR model on Z I ,  i.e., ~b = L, ff = R or vice versa. 

Closed orbits for the FR model on Z~ were discovered by Wu and 
Cohen. 15~ In ref. 8 we showed that the FR model has no closed orbits in Zo. 
The proof  of this fact easily extends in our  setting to the following theorem: 
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Theorem 3. For any k >/1 if for all 1 ~< i~< k the scattering rules ~i 
have no backscattering, then there is no z e Zo whose orbit is closed. 

To state the next theorem, we need a further definition. The transfor- 
mation g is time reversible iff ~ =  - ~bi+~mod(k ~ Vie {1, 2 ..... k}. Note that g 
can be time reversible only if k = 2! The models of this sort studied by 
physicists and chemists have all been of the sort k --- 2. In this case we have 
the following additional result. 

Theorem 4. If g is not time reversible and all ~ do not have any 
backscattering, then g has no closed orbits. 

The following corollary to Theorem 4 was proven in ref. 8. 

Corollary 5. The FM model has no closed orbits. 

From the previous theorems it is clear that the FR model plays a very 
special role among all cyclic cellular automata. The next theorem shows 
that it has very many closed orbits. 

Theorem 6, Consider the FR model. 

(a) (Full occupancy) Each z~Zo has unbounded (and thus not 
closed) orbit. 

(b) (Partial occupancy) Let /~ be any product probability measure 
on s with full support. Then the set {x~/2~: the orbit of the particle 
starting at the origin (in any of the four directions) is closed} has full 
/t-measure. 

(c) The set {xEf2t: the orbit of the particle starting at the origin (in 
any of the four directions) is closed} is open and dense in Z1. 

Part (a) was proven in ref. 8. 
When an orbit is periodic the past history of the trajectory determines 

the future; thus as a corollary to Theorem 6 we have: 

Corollary 7. If # is an invariant measure, then the entropy (~2~ of 
the FR model is zero. 

Let P(r, n) be the probability density to find the particle at position 
r ~ Z  2 at time n when it started at the origin at time n - - 0  with each of 
the original four directions having equal probability. The main square 
displacement of the particle is then 

d ( n ) : =  ~ I r l2p(r ,n)  (1) 
r ~ Z  2 
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The cellular automata is said to have a complete absence of diffusion if 
there is a constant C such that A(n)< CVn. 

Theorem 8. For any product probability measure on I2, with full 
support, the FR model has a complete absence of diffusion. 

Theorem 8 should be compared to a result in ref. 9, where for each 
e > 0  an invariant measure is constructed for a certain Lorentz lattice 
gas cellular automaton for which almost every orbit is periodic but 
A ( n ) > n  2-~. 

Let Xi := s'2~• {0, 1, 2, 3} for i~ {0, 1 }. On 3(,. we think of the lattice 
site where the particle is located as the orogin and denote the discretized 
motion by f :  X~--* X~. In this frame the motion is related to the particle's 
frame of reference, f is referred to as the Lagrangian dynamics, while the 
nonrelativized motion g is then called the Eulerian dynamics. Closed 
(periodic) Eulerian-g-orbits are always periodic Lagrangian-f-orbits, but 
the converse is far from being true. 

In ref. 10 we studied periodic Lagrangian orbits for the FM model on 
X o or Xt and the FR model on Xo. If ll gives equal mass to left and right 
rotators and each initial direction {0, 1,2,3}, then /~ is an invariant 
measure for the Lagrangian dynamics f .  Theorems 6 and 8 do not require 
the invariance of/~. 

3. P R O O F S  OF R E S U L T S  

The arithmetic of all scattering rules is mod(4) and this will not be 
explicitly stated in the proofs. A closed orbit defines a connected set O c Z-' 
of the vertices and edges which the particle hits and this set has a 
well-defined boundary F := 80. A corner of the boundary is a vertex with 
two edges in F and two edges in Z2\O, and for each of the pairs the two 
edges are perpendicular to each other. Clearly there are four possibilities 
for such corners. 

Proof of Theorem 1. Since ~bi has no backscattering, the boundary of 
any closed orbit must have all four types of corners. Clearly the particle 
would have to hit each of the four corners when the scattering rule is in 
state ~b i. Because of this for each j ~  {0, 1, 2, 3} for each pair j, j +  1 either 
~ b ( j ) = j + l  or ~b(j+ 1 ) = j .  The proof is completed with the following 
lemma. I 

Lemma A. If for each j ~  {0,1, 2, 3}, ~ b ( j ) = j + l  or ~ b ( j + l ) = j ,  
then ~b is a rotator. 
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Proof. Suppose ~b(0)= 1. It is easy to see that if ~ (1 )=  0 or = 3, the 
assumptions of the lemma cannot hold. Thus, ~b(1)=2. Likewise the 
assumption forces q~(2)= 3 and then q~(3)=0, a left rotator. If originally 
~ (1 )=  0, a right rotator arises. II 

Proof of  Theorem 4. Suppose g has a closed orbit. Since Vie { 1, 2 }, 
~i has no backscattering, Theorem 1 implies that all rules are rotators. The 
minimal presentation of the finite automaton implies that ~ :/: q~2 and thus 
one is a left rotator and the other is a right rotator. Thus g is time 
reversible, a contradiction. Thus no closed orbit could have existed. | 

Proof of  Theorem 6. (a) This part was proved in ref. 8. 

(b) The special configuration drawn in Fig. 2 plays an important role 
in the creation of closed orbits. It is a "reflector," that is, when the particle 
enters it in the location and direction indicated in Fig. 2 it will leave it from 
the same location with the opposite direction. The configuration of rotators 
will be different at this moment, but they will have the same property. 
Namely, when the particle reenters at the same location in the same 
direction it will again exit the reflector from that location in the opposite 
direction. After the second time the configuration of rotators returns to the 
original configuration. Note that other configurations than the one of 
Fig. 2 (larger ones) can also be reflectors. Now any orbit which hits two 
nonintersecting reflectors will necessarily be closed, since the FR model is 
time reversible. Thus, to prove Theorem 6, we must show that for almost 
every configuration the particle starting at the origin will hit two different 
reflectors unless it is already periodic for some other reason. 

C; C., 

A reftecfor 

Fig. 2. A reflector. 
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To see this, we construct 20 different cylinder sets defined on 5 by 5 
squares. Each of these cylinder sets has the reflector of Fig. 2 in the middle 
3 by 3 square. The cylinder sets are so constructed that a particle entering 
into the cylinder set on a certain fixed edge will get reflected by the 
reflector. Two examples are shown in Fig. 3. Each of the cylinder sets will 
have this property for a different edge entering the square. Let a > 0 be the 
minimum of the measures of these 20 cylinder sets. Now periodically parti- 
tion Z 2 into 5 by 5 squares. Then the orbit of a particle will infinitely 
often cross from one box into another. Each time it enters a new box the 
probability it will enter a reflector is larger than a. If it enters only a finite 
number of new boxes, its orbit must be closed. Since the contents of newly 
entered boxes are independent, the Borel-Cantelli lemma implies that the 
particle will enter a reflector infinitely often with probability one. This 
implies that the orbit is closed. 

(c) The density follows from part (b). Each closed orbit defines a 
cylinder set by fixing the states on the set of vertices which the orbit hits. 
All points in this cylinder set clearly have closed orbits. Each point whose 
orbit is closed is contained in such a cylinder set, and since cylinder sets are 
open, part (c) follows. | 

Proof of Theorem 8. Let B, := { ( i , j ) eZ2 :  max(lil, Ijl)~<n}. Now, 
just as in Theorem 6, periodically partition Z 2 into 5 by 5 boxes. For each 
of the 20 entering edges into a 5 by 5 box consider the set of all 5 by 5 con- 
figurations for which the configuration is not a reflector for the given enter- 
ing edge. Call this set of configurations Cj (here i a label for the entering 
edge). Let Dr := {L, R, S}af\C~, that is, the set of all 5 by 5 configurations 
which are reflectors for the given entering edge. Let c~ :=/~(Cj). It is easy 
to see that C, is nonempty and that D~ is also nonempty; thus c;e (0,1). Let 
c := max~ ci. Since there is only a finite number of i, we have c �9 (0, 1 ) and 

Fig. 3. 
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A particle entering the 5 by 5 configuration along the indicated edge will be reflected 
by the reflector. 
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c is an upper bound on the probability that on entering a given 5 by 5 box 
we leave it without being reflected by a reflector. 

We consider the set of periodic orbits that stay inside Bs,, and are 
periodic because they hit two (special) nonintersecting reflectors, Rs, := 
{zeZ~: among the first n different partition elements (5 by 5 boxes) which 
z's forward orbit visits, it encounters a reflector inside one of the elements 
(i.e., an event D;), the same happens for z's backward orbits, and the parti- 
tion elements where the forward and backward reflectors occur are dis- 
tinct}. Note that Rs,, does not include z's which are periodic because they 
hit 5 by 5 reflectors at least one of which is not in the interior of a partition 
element of Z 2 into 5 by 5 boxes, because they hit larger (rnxrn, m > 5 )  
reflectors or because they are periodic for some other reason. The orbits of 
z ~ Rs,, visit at most 5 x 5 x 2n = 50n lattice sites. There are three scattering 
rules (L, R, S) and four directions; thus, it is not hard to see that the 
particle must have period less than or equal to 4 -3  tS~ 

Let P ,  := {zEZ~: period z=n},  Qn := {zeZl" period z<~n}, p,, := 
P(P,,), q,, := #(Qn), and r~ := #(R,,). We have shown that Rs,, c Q4.3c50,, or 

rs, ~< q4.3~o,~ (2) 

c . 1 2 3 Let Rs~ .= A,, u An u A,,, where At consists of the orbits not in Rs, , 
which visit less than n different 5 by 5 boxes (i.e., they are periodic), A,] 
consists of the orbits where either the forward or the backward orbit does 
not hit the appropriate reflector in the first n different boxes it visits, and 
A3~ consists of the orbits where both the forward and backward orbit hit 
only one reflector in the first n different boxes they visit and these reflectors 
intersect one another. 

The measure A] is clearly bounded from above by K~c", where K~ >0.  
The measure of A, 3 is bounded from above by K2c"- ~ (Kz > 0), since both 
the forward and backward orbits have Ci-events n -  1 times. Now it is not 
hard to see that in fact c z Q4.3~50,~ ~ A 5,, w A 3,,. Thus, combining the above 
estimates gives 

1 - r,, <~ K3 ~n (3) 

where K3 > 0 and ? e (0, 1). Now 

p,+q,,_~<~l (4) 

Combining Eqs. (2)-(4) yields 1-q,,<~K4O ml~ where K4, K s > 0  and 
~ (0, 1 ). Thus 

A ( n ) < ~ Y ' . n 2 p n < ~ n 2 ( 1 - q . _ l ) < . ~ , n 2 K 4 ~ r s ' ~  | (5) 
n tt n 
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